SQL+NoSQL 架构详解
Comprehensive Analysis of Modern Data Architectures: Polyglot Persistence, CQRS, and Distributed Consistency
现代数据架构综合分析:混合持久化、CQRS 与分布式一致性
1. Executive Summary
1. 执行摘要
English Statement:
The landscape of enterprise data architecture has undergone a fundamental transformation over the last two decades. We have transitioned from the era of monolithic applications—anchored by singular, all-encompassing Relational Database Management Systems (RDBMS)—to a distributed paradigm characterized by microservices and cloud-native scalability.1 This report provides an exhaustive examination of the key architectural patterns that have emerged to address the limitations of the monolithic model: Polyglot Persistence, Command Query Responsibility Segregation (CQRS), and Event Sourcing. Furthermore, it critically analyzes the operational challenges introduced by these patterns, specifically focusing on the "Dual Write" problem and the mechanisms of Change Data Capture (CDC) and the Transactional Outbox pattern required to maintain consistency in distributed systems.3 The analysis draws upon diverse industry perspectives, including insights from Oracle, Microsoft, AWS, IBM, and MongoDB, to offer a balanced view of the trade-offs between agility, scalability, and complexity.5
Chinese Statement:
在过去二十年中,企业数据架构的格局经历了根本性的变革。我们要从以单一、包罗万象的关系型数据库管理系统(RDBMS)为支撑的单体应用时代,过渡到以微服务和云原生可扩展性为特征的分布式范式 1。本报告对为解决单体模型局限性而出现的关键架构模式进行了详尽的审查:即混合持久化(Polyglot Persistence)、命令查询职责分离(CQRS)和事件溯源(Event Sourcing)。此外,报告还批判性地分析了这些模式引入的运维挑战,特别关注了“双写”问题,以及在分布式系统中维护一致性所需的变更数据捕获(CDC)和事务性发件箱模式的机制 3。分析借鉴了包括 Oracle、Microsoft、AWS、IBM 和 MongoDB 在内的多种行业观点,以提供关于敏捷性、可扩展性和复杂性之间权衡的平衡视角 5。
2. The Evolution of Data Persistence: From Monoliths to Microservices
2. 数据持久化的演变:从单体到微服务
2.1 The Legacy of the Monolith
2.1 单体架构的遗产
English Statement:
Historically, the default architecture for enterprise systems was the monolith. In this model, disparate business functions—ranging from inventory management and user sessions to financial processing and reporting—shared a single, centralized relational database.1 This approach, often implemented on robust infrastructure like IBM Mainframes or large Oracle clusters, offered significant advantages in terms of simplicity and data integrity. ACID (Atomicity, Consistency, Isolation, Durability) transactions were easily enforced because all data resided within the same boundary. However, this centralization created a critical bottleneck: a "single point of failure" where a database outage could paralyze the entire enterprise.1 Moreover, as applications began to scale to meet internet-level demands, the rigidity of the relational schema became a hindrance. Scaling a monolith often meant "vertical scaling" (adding more hardware power), which has physical and financial limits compared to the "horizontal scaling" offered by modern distributed systems.2
Chinese Statement:
历史上,企业系统的默认架构是单体架构。在这种模式下,不同的业务功能——从库存管理和用户会话到财务处理和报表——共享一个单一的、集中的关系型数据库 1。这种方法通常在 IBM 主机或大型 Oracle 集群等强大的基础设施上实现,在简便性和数据完整性方面提供了显著优势。由于所有数据都驻留在同一边界内,ACID(原子性、一致性、隔离性、持久性)事务很容易强制执行。然而,这种集中化制造了一个关键瓶颈:即“单点故障”,一旦数据库宕机,整个企业可能会因此瘫痪 1。此外,随着应用开始扩展以满足互联网规模的需求,关系模式的僵化成为一种阻碍。扩展单体应用通常意味着“垂直扩展”(增加更多硬件能力),与现代分布式系统提供的“水平扩展”相比,这在物理和财务上都有局限性 2。
2.2 The Microservices Catalyst
2.2 微服务的催化作用
English Statement:
The shift towards microservices architecture fundamentally dismantled the monolithic database. By decomposing applications into smaller, loosely coupled services, organizations gained the ability to deploy, scale, and maintain specific business functions independently.2 A core tenet of this architecture is the "Database-per-Service" pattern, which mandates that each microservice encapsulates its own data store to ensure decoupling. This prevents the "shared database" anti-pattern, where tight coupling at the data layer hinders the independent evolution of services.2 With each service owning its data, the constraint of a single data model was removed, paving the way for Polyglot Persistence. Developers were no longer forced to "twist" relational models to fit non-relational data, such as hierarchical documents or high-velocity telemetry, allowing for the adoption of specialized storage technologies.2
Chinese Statement:
向微服务架构的转变从根本上拆解了单体数据库。通过将应用分解为更小的、松散耦合的服务,组织获得了独立部署、扩展和维护特定业务功能的能力 2。这种架构的一个核心原则是“每个服务一个数据库”模式,它要求每个微服务封装自己的数据存储以确解耦。这防止了“共享数据库”的反模式,即数据层的紧密耦合阻碍了服务的独立演进 2。随着每个服务拥有自己的数据,单一数据模型的约束被消除,为混合持久化铺平了道路。开发人员不再被迫“扭曲”关系模型以适应非关系型数据,如分层文档或高速遥测数据,从而允许采用专门的存储技术 2。
3. Polyglot Persistence: Principles and Implementation
3. 混合持久化:原则与实现
3.1 Defining the Polyglot Paradigm
3.1 定义混合持久化范式
English Statement:
Polyglot persistence is the architectural practice of utilizing multiple distinct data storage technologies within a single logical application to address diverse data processing requirements.1 The term, which gained prominence alongside the NoSQL movement around 2008, rejects the "one-size-fits-all" philosophy of the relational era.5 Instead, it advocates for selecting the optimal storage engine for each specific data shape and workload. For instance, an e-commerce platform might leverage a key-value store (like Redis) for sub-millisecond session management, a document database (like MongoDB) for flexible product catalogs, and a traditional RDBMS (like PostgreSQL or Oracle) for strictly consistent financial transactions.1 This approach allows systems to achieve high availability and scalability by preventing the limitations of one technology from constraining the entire system.1
Chinese Statement:
混合持久化是在单一逻辑应用中使用多种不同的数据存储技术,以满足多样化数据处理需求的架构实践 1。该术语在 2008 年左右伴随 NoSQL 运动而兴起,它摒弃了关系型数据库时代“一刀切”的哲学 5。相反,它主张为每种特定的数据形态和工作负载选择最佳的存储引擎。例如,一个电子商务平台可能会利用键值存储(如 Redis)进行亚毫秒级的会话管理,利用文档数据库(如 MongoDB)处理灵活的产品目录,并利用传统 RDBMS(如 PostgreSQL 或 Oracle)处理严格一致的金融交易 1。这种方法通过防止一种技术的局限性限制整个系统,使系统能够实现高可用性和可扩展性 1。
3.2 Matching Data Models to Workloads
3.2 数据模型与工作负载的匹配
English Statement:
Successful polyglot persistence requires a deep understanding of the available data models and their specific strengths. Microsoft Learn and IBM provide a framework for categorization 7:
Relational (SQL): Best suited for structured data requiring ACID compliance, complex joins, and referential integrity. Typical use cases include financial ledgers, inventory management, and ERP systems.
Document (NoSQL): Designed for semi-structured data where the schema evolves rapidly. Data is stored in JSON/BSON formats, making it ideal for content management systems, user profiles, and product catalogs.8
Key-Value: Optimized for high-throughput, low-latency access patterns where complex querying is unnecessary. Common applications include session caching, shopping carts, and real-time bidding systems.
Graph: Engineered to manage highly interconnected data. It excels in scenarios involving social networks, recommendation engines, and fraud detection, where the relationships between data points are as important as the data itself.
Chinese Statement:
成功的混合持久化需要对可用数据模型及其特定优势有深刻的理解。Microsoft Learn 和 IBM 提供了一个分类框架 7:
关系型(SQL): 最适合需要符合 ACID 原则、复杂连接和引用完整性的结构化数据。典型用例包括财务分类账、库存管理和 ERP 系统。
文档型(NoSQL): 专为模式快速演变的半结构化数据设计。数据以 JSON/BSON 格式存储,使其成为内容管理系统、用户档案和产品目录的理想选择 8。
键值型: 针对高吞吐量、低延迟的访问模式进行了优化,不需要复杂的查询。常见应用包括会话缓存、购物车和实时竞价系统。
图数据库: 专为管理高度互连的数据而设计。它在涉及社交网络、推荐引擎和欺诈检测的场景中表现出色,在这些场景中,数据点之间的关系与数据本身一样重要。
3.3 The Complexity Trade-off: The "Silent Killer"
3.3 复杂性权衡:“隐形杀手”
English Statement:
While polyglot persistence offers theoretical purity and performance optimization, it introduces significant operational overhead. Critics have labeled it a "silent killer" of agility due to the cognitive load it places on development teams.11 In a polyglot environment, developers must maintain expertise in multiple database query languages, consistency models, and operational quirks. The fragmentation of the technology stack can lead to "siloed" knowledge and increased difficulty in hiring and onboarding. Furthermore, ensuring data consistency across disparate systems—such as syncing data between a SQL write master and a NoSQL read replica—is a non-trivial distributed systems problem.5 Some industry voices argue that the rise of Distributed SQL databases (like CockroachDB or YugabyteDB) offers a compelling alternative, providing the horizontal scalability of NoSQL while retaining the familiar transactional guarantees of SQL, potentially negating the need for a complex polyglot architecture.5
Chinese Statement:
虽然混合持久化提供了理论上的纯粹性和性能优化,但它引入了显著的运维开销。批评者因其给开发团队带来的认知负担而将其称为敏捷性的“隐形杀手”11。在混合持久化环境中,开发人员必须保持对多种数据库查询语言、一致性模型和运维特性的专业知识。技术栈的碎片化可能导致知识“孤岛”,并增加招聘和入职的难度。此外,确保不同系统之间的数据一致性——例如在 SQL 写入主节点和 NoSQL 读取副本之间同步数据——是一个非同寻常的分布式系统问题 5。一些行业声音认为,分布式 SQL 数据库(如 CockroachDB 或 YugabyteDB)的兴起提供了一种令人信服的替代方案,在提供 NoSQL 水平可扩展性的同时保留 SQL 熟悉的事务保证,从而可能消除对复杂混合持久化架构的需求 5。
4. CQRS: Decoupling Reads and Writes
4. CQRS:读写解耦
4.1 Architectural Definition
4.1 架构定义
English Statement:
Command Query Responsibility Segregation (CQRS) is a pattern that fundamentally separates the data model used for updating information (Commands) from the model used for reading information (Queries).12 In traditional CRUD (Create, Read, Update, Delete) architectures, a single conceptual representation of data is used for both operations. However, in complex domains, the requirements for writing data (validation, complex business logic, normalization) are often diametrically opposed to the requirements for reading data (fast retrieval, denormalization, aggregation). CQRS acknowledges this asymmetry by splitting the application into two distinct sides: the Command Side, which handles all updates and enforces domain rules, and the Query Side, which serves data to the user interface.12
Chinese Statement:
命令查询职责分离(CQRS)是一种从根本上区分用于更新信息的数据模型(命令)和用于读取信息的数据模型(查询)的模式 12。在传统的 CRUD(创建、读取、更新、删除)架构中,单一的数据概念表示同时用于这两种操作。然而,在复杂的领域中,写入数据的需求(验证、复杂业务逻辑、范式化)通常与读取数据的需求(快速检索、反范式化、聚合)截然相反。CQRS 承认这种不对称性,将应用拆分为两个独特的部分:处理所有更新并强制执行领域规则的命令端,以及向用户界面提供数据的查询端 12。
4.2 Implementation Variations and Cloud Patterns
4.2 实现变体与云模式
English Statement:
CQRS can be implemented with varying degrees of complexity, ranging from logical separation within a single database to physical separation across different storage technologies. AWS documentation highlights several prevalent implementation patterns 12:
Single RDBMS with Split Models: The simplest form uses one database but employs different internal models or views for reading and writing.
Read Replicas: A common scaling strategy where write operations are directed to a primary database instance, while read operations are routed to one or more asynchronous read replicas. This offloads the primary instance but introduces replication lag.
Hybrid SQL/NoSQL (Polyglot CQRS): This advanced pattern leverages the specific strengths of different databases. For example, a system might use a relational database (or a strongly consistent store like DynamoDB) for the Command side to ensure data integrity during writes. The data is then projected asynchronously into a NoSQL store (like Elasticsearch or a localized JSON store) optimized for complex search queries or specific UI views.12 This approach allows for independent scaling; if the system is read-heavy (e.g., 1000 reads per 1 write), the Query side can be scaled out massively without over-provisioning the Command side.16
Chinese Statement:
CQRS 的实现复杂度各异,从单一数据库内的逻辑分离到跨不同存储技术的物理分离。AWS 文档强调了几种流行的实现模式 12:
单一 RDBMS 的分离模型: 最简单的形式使用一个数据库,但在内部使用不同的模型或视图进行读取和写入。
只读副本: 一种常见的扩展策略,写入操作指向主数据库实例,而读取操作被路由到一个或多个异步只读副本。这减轻了主实例的负担,但引入了复制延迟。
混合 SQL/NoSQL(多语言 CQRS): 这种高级模式利用了不同数据库的特定优势。例如,系统可能使用关系型数据库(或像 DynamoDB 这样强一致性的存储)作为命令端,以在写入期间确保数据完整性。然后,数据被异步投射到为复杂搜索查询或特定 UI 视图优化的 NoSQL 存储(如 Elasticsearch 或本地化的 JSON 存储)中 12。这种方法允许独立扩展;如果系统是读取密集型的(例如,每 1 次写入对应 1000 次读取),查询端可以大规模扩展,而无需过度配置命令端 16。
4.3 Benefits and Constraints
4.3 优势与约束
English Statement:
The primary advantage of CQRS is the ability to optimize read and write workloads independently. It enables the Query Model to be structured exactly as the view requires, eliminating the need for complex, performance-draining joins at runtime.17 Additionally, it enhances security by allowing granular permissions; separate policies can be applied to the read and write paths.16 However, CQRS introduces inherent complexity. It requires mechanisms to keep the Read model in sync with the Write model, inevitably leading to Eventual Consistency. Users may experience a delay between performing an action and seeing the result, a trade-off that must be carefully managed in the user experience design.12 Consequently, CQRS is recommended only for complex domains where the benefits of independent scaling and modeling outweigh the implementation costs.18
Chinese Statement:
CQRS 的主要优势在于能够独立优化读取和写入工作负载。它使查询模型能够完全按照视图的需求进行结构化,从而消除了运行时对复杂且消耗性能的连接操作的需求 17。此外,它通过允许细粒度的权限来增强安全性;可以对读取和写入路径应用单独的策略 16。然而,CQRS 引入了固有的复杂性。它需要机制来保持读取模型与写入模型同步,这不可避免地导致了最终一致性。用户可能会在执行操作和看到结果之间经历延迟,这是在用户体验设计中必须仔细管理的权衡 12。因此,仅建议在独立扩展和建模的收益超过实现成本的复杂领域中使用 CQRS 18。
5. Event Sourcing and the Role of Projections
5. 事件溯源与投影的角色
5.1 The Immutable Log: Event Sourcing Explained
5.1 不可变日志:事件溯源解析
English Statement:
Event Sourcing is an architectural pattern that complements CQRS by changing the way state is persisted. In a traditional system, the database stores the current state of an entity (e.g., Balance = 100). If a change occurs, the old value is overwritten. In contrast, Event Sourcing persists the sequence of events that led to the current state.18 Every change is captured as an immutable event object (e.g., AccountCreated, FundsDeposited, FundsWithdrawn) and stored in an append-only Event Store. The current state is not stored directly but is derived by replaying these events from the beginning.19 This approach provides a mathematically complete audit trail, enabling "time travel" debugging where developers can reconstruct the state of the system at any past point in time.18
Chinese Statement:
事件溯源是一种通过改变状态持久化方式来补充 CQRS 的架构模式。在传统系统中,数据库存储实体的当前状态(例如,Balance = 100)。如果发生变化,旧值会被覆盖。相比之下,事件溯源持久化导致当前状态的事件序列 18。每一个变化都被捕获为一个不可变的事件对象(例如,AccountCreated(账户已创建)、FundsDeposited(资金已存入)、FundsWithdrawn(资金已提取)),并存储在一个仅追加的事件存储(Event Store)中。当前状态不直接存储,而是通过从头重放这些事件衍生出来的 19。这种方法提供了数学上完整的审计轨迹,支持“时间旅行”调试,开发人员可以借此重建系统在过去任何时间点的状态 18。
5.2 From Events to Views: Projectors and Materializers
5.2 从事件到视图:投影器与物化器
English Statement:
While the Event Store is excellent for writes and auditing, it is inefficient for queries (e.g., "Show me all users with a balance > 100"). To solve this, Event Sourcing systems employ components known as Projectors (sometimes referred to as Materializers in Akka frameworks).21 A Projector is a background process that listens to the stream of events and updates a separate "Read Model" optimized for queries.14 For example, a UserBalanceProjector would subscribe to financial events and update a simple SQL table or a MongoDB collection with the current balance. This process transforms the immutable event stream into a mutable state suitable for display. This pattern effectively implements the "Q" in CQRS, creating a bridge between the write-optimized event log and the read-optimized views.14
Chinese Statement:
虽然事件存储非常适合写入和审计,但对于查询(例如,“显示所有余额大于 100 的用户”)来说效率低下。为了解决这个问题,事件溯源系统采用被称为投影器(Projectors,在 Akka 框架中有时称为 Materializers/物化器)的组件 21。投影器是一个后台进程,它监听事件流并更新一个专门为查询优化的独立“读取模型” 14。例如,一个 UserBalanceProjector 会订阅金融事件,并更新一个包含当前余额的简单 SQL 表或 MongoDB 集合。这个过程将不可变的事件流转换为适合显示的易变状态。这种模式有效地实现了 CQRS 中的“Q”,在写优化的事件日志和读优化的视图之间建立了一座桥梁 14。
5.3 Materialized Views in Practice
5.3 实践中的物化视图
English Statement:
The concept of the projection is formalized in database technologies as Materialized Views. Unlike standard database views, which are virtual and compute results on-the-fly, materialized views store the pre-computed result of a query on disk.23 MongoDB's "On-Demand Materialized Views," for instance, utilize aggregation pipelines with $merge or $out stages to persist complex analytics results.23 This dramatically improves read performance by trading computation time at query (read) time for computation time at update (write) time. In a CQRS context, these materialized views are the target of the Projectors, serving as the cached, high-performance data source for user-facing APIs.17 This architecture allows for cost optimization, as heavy analytical queries are offloaded from the primary transactional database to less expensive, read-optimized storage.17
Chinese Statement:
投影的概念在数据库技术中被形式化为物化视图(Materialized Views)。与标准的虚拟数据库视图(即时计算结果)不同,物化视图将查询的预计算结果存储在磁盘上 23。例如,MongoDB 的“按需物化视图”利用带有 $merge 或 $out 阶段的聚合管道来持久化复杂的分析结果 23。这通过以更新(写入)时的计算时间换取查询(读取)时的计算时间,极大地提高了读取性能。在 CQRS 上下文中,这些物化视图是投影器的目标,作为面向用户 API 的缓存、高性能数据源 17。这种架构允许进行成本优化,因为繁重的分析查询从主事务数据库卸载到了更便宜、读优化的存储中 17。
6. Distributed Consistency Challenges and Patterns
6. 分布式一致性挑战与模式
6.1 The Dual Write Anti-Pattern
6.1 双写反模式
English Statement:
One of the most pervasive and dangerous challenges in distributed systems (especially those using Polyglot Persistence and CQRS) is the "Dual Write" problem. A dual write occurs when an application attempts to modify state in two different systems within a single business operation without a distributed transaction.3 A classic example is a microservice that updates a local database table and subsequently publishes an event to a message broker (like Kafka or RabbitMQ) to notify other services. If the database commit succeeds but the message publication fails (due to network issues or broker unavailability), the system becomes inconsistent: the local state has changed, but the rest of the system is unaware.3 This inconsistency can lead to "phantom" data, where users see items that don't exist, or downstream processes failing to trigger. It is widely considered an architectural anti-pattern.3
Chinese Statement:
分布式系统(尤其是使用混合持久化和 CQRS 的系统)中最普遍且危险的挑战之一是“双写”(Dual Write)问题。当应用试图在单一业务操作中修改两个不同系统的状态,且没有分布式事务支持时,就会发生双写 3。一个典型的例子是,微服务更新本地数据库表,随后向消息代理(如 Kafka 或 RabbitMQ)发布事件以通知其他服务。如果数据库提交成功但消息发布失败(由于网络问题或代理不可用),系统就会变得不一致:本地状态已更改,但系统的其余部分并不知情 3。这种不一致可能导致“幻影”数据,即用户看到不存在的项目,或下游流程未能触发。这被广泛视为一种架构反模式 3。
6.2 The Transactional Outbox Pattern
6.2 事务性发件箱模式
English Statement:
To guarantee consistency without relying on heavy two-phase commit (2PC) protocols, the Transactional Outbox Pattern is the industry-standard solution. In this pattern, the application does not publish directly to the message broker. Instead, it writes the message payload to a designated "Outbox" table within the same database transaction used for the business data.4 Because modern RDBMS guarantee atomicity for operations within a single transaction, either both the business data and the outbox message are persisted, or neither is. A separate, asynchronous process (the "Relay" or "Outbox Processor") then polls the outbox table and reliably publishes the messages to the broker, retrying until success.27 This pattern effectively leverages the local database's ACID properties to achieve reliable messaging in a distributed environment.29
Chinese Statement:
为了在不依赖沉重的两阶段提交(2PC)协议的情况下保证一致性,事务性发件箱模式(Transactional Outbox Pattern)成为行业标准的解决方案。在这种模式下,应用不直接向消息代理发布消息。相反,它将消息负载写入与业务数据所使用的同一数据库事务中的指定“发件箱”(Outbox)表 4。由于现代 RDBMS 保证单一事务内操作的原子性,业务数据和发件箱消息要么都被持久化,要么都不被持久化。随后,一个独立的异步进程(“中继”或“发件箱处理器”)轮询发件箱表,并可靠地将消息发布到代理,直到成功为止 27。这种模式有效地利用本地数据库的 ACID 特性,在分布式环境中实现了可靠的消息传递 29。
6.3 Change Data Capture (CDC)
6.3 变更数据捕获 (CDC)
English Statement:
Change Data Capture (CDC) offers a sophisticated alternative or complement to the Outbox pattern. CDC tools, such as Debezium, hook directly into the database's transaction log (e.g., the WAL in PostgreSQL or the Oplog in MongoDB) to identify and capture all data modifications.3 This approach decouples the application logic from the replication process entirely. The application simply commits to its database, and the CDC infrastructure automatically detects the change and propagates it as an event to downstream consumers.29 CDC is particularly valuable in Polyglot Persistence scenarios, where data from a legacy RDBMS needs to be synchronized in near real-time to a search index (like Elasticsearch) or a cache, without requiring changes to the legacy application code.3 While CDC simplifies the application layer, it shifts complexity to the infrastructure, requiring robust management of the CDC connectors and event pipelines.29
Chinese Statement:
变更数据捕获(CDC)为发件箱模式提供了一种复杂的替代或补充方案。CDC 工具(如 Debezium)直接挂钩到数据库的事务日志(例如 PostgreSQL 的 WAL 或 MongoDB 的 Oplog),以识别和捕获所有数据修改 3。这种方法将应用逻辑与复制过程完全解耦。应用只需向其数据库提交,CDC 基础设施会自动检测变更并将其作为事件传播给下游消费者 29。CDC 在混合持久化场景中特别有价值,例如需要将来自遗留 RDBMS 的数据近乎实时地同步到搜索索引(如 Elasticsearch)或缓存中,而无需修改遗留应用的代码 3。虽然 CDC 简化了应用层,但它将复杂性转移到了基础设施,需要对 CDC 连接器和事件管道进行稳健的管理 29。
7. Conclusion: Balancing Agility and Consistency
7. 结论:平衡敏捷性与一致性
English Statement:
The transition to modern data architectures—driven by the adoption of Polyglot Persistence, CQRS, and Event Sourcing—represents a necessary evolution to meet the demands of internet-scale applications. By moving away from the monolithic "one-size-fits-all" database, organizations gain the ability to scale components independently, optimize storage costs, and leverage the specific strengths of diverse technologies.1 However, this flexibility comes at the cost of significant operational complexity. The fragmentation of the data landscape necessitates a rigorous approach to data governance and consistency. Architects must vigilantly guard against anti-patterns like Dual Writes by implementing robust integration patterns such as the Transactional Outbox or CDC.3 Ultimately, the success of a polyglot architecture relies not just on selecting the right databases, but on mastering the "glue" that holds them together—ensuring that despite the distributed nature of the data, the system behaves as a coherent, consistent whole.5
Chinese Statement:
在混合持久化、CQRS 和事件溯源的推动下,向现代数据架构的转型代表了满足互联网规模应用需求的必要演进。通过摆脱单体“一刀切”的数据库,组织获得了独立扩展组件、优化存储成本并利用多种技术特定优势的能力 1。然而,这种灵活性是以显著的运维复杂性为代价的。数据格局的碎片化使得对数据治理和一致性的严格方法成为必要。架构师必须通过实施事务性发件箱或 CDC 等稳健的集成模式,警惕地防范双写等反模式 3。归根结底,混合持久化架构的成功不仅依赖于选择正确的数据库,还在于掌握将它们粘合在一起的“胶水”——确保尽管数据具有分布式特性,系统仍能作为一个连贯、一致的整体运行 5。
Works cited
Polyglot Persistence with Oracle Cloud Infrastructure Data Services, accessed November 28, 2025,
Choosing the Right Databases for Microservices - IBM, accessed November 28, 2025,
Red Hat Architecture Center - Change Data Capture, accessed November 28, 2025,
Transactional outbox pattern - AWS Prescriptive Guidance, accessed November 28, 2025,
Why Distributed SQL Beats Polyglot Persistence for Building Microservices? - Yugabyte, accessed November 28, 2025,
Data Management Landing Zone Overview - Cloud Adoption Framework - Microsoft Learn, accessed November 28, 2025,
What Is a NoSQL Database? | IBM, accessed November 28, 2025,
Data Considerations for Microservices - Azure Architecture Center | Microsoft Learn, accessed November 28, 2025,
Understand Data Models - Azure Architecture Center | Microsoft Learn, accessed November 28, 2025,
Understanding Database Types and How to Choose the Right One for Your Needs - Domo, accessed November 28, 2025,
Solving the Pains of Polyglot Persistence With Distributed SQL - DZone, accessed November 28, 2025,
CQRS pattern - AWS Prescriptive Guidance, accessed November 28, 2025,
My Journey into CQRS and Event Sourcing | by Rodrigo Botti | Nexa Digital | Medium, accessed November 28, 2025,
Event Sourcing: Projections - Domain Centric, accessed November 28, 2025,
Implement CQRS Architecture on AWS | Joud W. Awad - Medium, accessed November 28, 2025,
Decompose monoliths into microservices by using CQRS and event sourcing - AWS Prescriptive Guidance, accessed November 28, 2025,
Real-Time Materialized Views With MongoDB Atlas Stream Processing, accessed November 28, 2025,
Build a CQRS event store with Amazon DynamoDB | AWS Database Blog, accessed November 28, 2025,
Overview of CQRS / Event Sourcing | Codementor, accessed November 28, 2025,
CQRS and Event Sourcing in Java - Baeldung, accessed November 28, 2025,
What is Event Sourcing? - Event Sourced Content Repository - Contributing - Neos Docs, accessed November 28, 2025,
Akka persistence - Beyond the lines, accessed November 28, 2025,
Views - Database Manual - MongoDB Docs, accessed November 28, 2025,
On-Demand Materialized Views - Database Manual - MongoDB Docs, accessed November 28, 2025,
How are MongoDB's On-Demand Materialized Views On-Demand vs their Standard Views?, accessed November 28, 2025,
How to create and manage Mongo DB Materialized Views using triggers. | by Boni Gopalan, accessed November 28, 2025,
Understanding the Dual-Write Problem and Its Solutions - Confluent, accessed November 28, 2025,
Handling the Dual-Write Problem in Distributed Systems | Auth0, accessed November 28, 2025,
Designing Fault-Tolerant Systems: Solving Dual Writes with CDC and Outbox - Medium, accessed November 28, 2025,
Build an application using microservices and CQRS - IBM Developer, accessed November 28, 2025,