量子计算与多重宇宙论述辨析
Technical Assessment of Google’s Willow Processor: Error Correction, Verifiable Advantage, and Interpretational Implications
1. Introduction: The Strategic Evolution of Superconducting Quantum Computing
EN:
The trajectory of quantum information science has largely been defined by the pursuit of two distinct but interrelated goals: the demonstration of computational supremacy over classical supercomputers and the realization of fault-tolerant logical qubits. In December 2024, Google Quantum AI announced the development of "Willow," a 105-qubit superconducting quantum processor that represents a watershed moment in this technological lineage.1 The Willow architecture succeeds previous generations—specifically the 53-qubit Sycamore processor used in the 2019 supremacy experiments—by introducing fundamental advancements in qubit fabrication, coherence time extension, and error mitigation strategies.2 While the 2019 experiment was a proof of principle, the Willow processor is positioned as a transitional technology bridging the gap between Noisy Intermediate-Scale Quantum (NISQ) devices and the era of utility-scale fault tolerance.3 The release is characterized by two primary breakthroughs: a Random Circuit Sampling (RCS) benchmark that widens the computational gap to a regime of $10^{25}$ years against classical simulation, and, perhaps more significantly, the experimental validation of quantum error correction (QEC) operating "below the surface code threshold".2
CN:
量子信息科学的发展轨迹主要由对两个截然不同但相互关联的目标的追求所定义:即演示相对于经典超级计算机的计算霸权,以及实现容错逻辑量子比特。2024 年 12 月,Google Quantum AI 宣布开发出“Willow”,这是一款 105 量子比特的超导量子处理器,代表了该技术谱系中的一个分水岭时刻 1。Willow 架构继承了上一代产品——特别是用于 2019 年霸权实验的 53 量子比特 Sycamore 处理器——引入了在量子比特制造、相干时间延长和错误缓解策略方面的根本性进步 2。虽然 2019 年的实验是原理验证,但 Willow 处理器被定位为连接含噪声中型量子(NISQ)设备与实用级容错时代的过渡技术 3。此次发布的特点是两项主要突破:一项随机电路采样(RCS)基准测试,将针对经典模拟的计算差距扩大到 $10^{25}$ 年的范围;或许更重要的是,实验验证了在“表面码阈值之下”运行的量子纠错(QEC)2。
EN:
The context of this announcement is critical, arriving at a time when the scalability of quantum systems faces intense scrutiny regarding the "noise bottleneck"—the theoretical concern that adding more qubits might introduce unmanageable entropy. Willow addresses this directly through "participation ratio engineering" and optimized circuit parameters, achieving a coherence time ($T_1$) of approximately 100 microseconds, a five-fold improvement over Sycamore.2 These hardware refinements have enabled the execution of algorithms that are not only complex but verifiable, specifically the "Quantum Echoes" protocol involving Out-of-Time-Order Correlators (OTOCs).5 Furthermore, the sheer magnitude of the computational speedup demonstrated has reignited foundational debates concerning the ontology of the quantum state, with Google’s leadership explicitly invoking the Many-Worlds Interpretation (MWI) and the theoretical frameworks of David Deutsch to explain the processor's performance.7
CN:
这一公告的背景至关重要,正值量子系统的可扩展性面临关于“噪声瓶颈”——即增加更多量子比特可能会引入无法控制的熵的理论担忧——的严密审视之时。Willow 通过“参与比工程”和优化的电路参数直接解决了这一问题,实现了约 100 微秒的相干时间($T_1$),这是 Sycamore 的五倍提升 2。这些硬件改进使得执行不仅复杂而且可验证的算法成为可能,特别是涉及时间非有序相关子(OTOCs)的“量子回声”协议 5。此外,所展示的巨大计算加速幅度重新点燃了关于量子态本体论的基础辩论,Google 的领导层明确引用了多世界诠释(MWI)和 David Deutsch 的理论框架来解释处理器的性能 7。
2. Hardware Architecture: The Willow Processor Specification
2.1 Architectural Design and Coherence Metrics
EN:
The Willow processor is constructed on a square grid architecture utilizing superconducting transmon qubits, a design choice that balances connectivity with control line density.2 The device features 105 active qubits, a significant scaling from the 53-qubit architecture of its predecessor, Sycamore, and the 72-qubit Bristlecone.2 A critical differentiator in Willow’s design is the focus on "participation ratio engineering." In superconducting circuits, energy loss (decoherence) often occurs at material interfaces or within the dielectric substrates due to two-level system (TLS) defects. By engineering the electromagnetic field distribution of the qubit capacitors and Josephson junctions, Google’s engineers successfully minimized the participation of these lossy dielectrics in the qubit mode.2 This material science innovation resulted in the substantial increase in average $T_1$ coherence times to roughly 100 $\mu$s.2
CN:
Willow 处理器构建在利用超导 Transmon 量子比特的方格架构上,这是一种平衡连接性与控制线密度的设计选择 2。该设备拥有 105 个活性量子比特,相比其前身 53 量子比特的 Sycamore 和 72 量子比特的 Bristlecone 实现了显著的扩展 2。Willow 设计的一个关键区别在于对“参与比工程”的关注。在超导电路中,能量损耗(退相干)通常由于双能级系统(TLS)缺陷而发生在材料界面或介电基底内部。通过对量子比特电容器和约瑟夫森结的电磁场分布进行工程设计,Google 的工程师成功地最小化了这些有损电介质在量子比特模式中的参与 2。这一材料科学的创新导致平均 $T_1$ 相干时间大幅增加至约 100 $\mu$s 2。
EN:
The architecture maintains a tunable coupler scheme, allowing for the dynamic adjustment of interaction strengths between neighboring qubits. This tunability is essential for executing high-fidelity two-qubit gates (such as the CZ or iSWAP gates) required for surface code error correction cycles.2 The average connectivity of the qubit grid is reported to be 3.47, reflecting the constraints of a planar 2D lattice where edge and corner qubits have fewer neighbors than bulk qubits.2 This connectivity metric is vital for the implementation of the surface code, which requires a minimum connectivity of 4 for bulk data qubits to interact efficiently with measurement (ancilla) qubits. The successful operation of the distance-7 surface code on this grid confirms that the fabrication yield and control fidelity were sufficient to mitigate the topological limitations of the lattice.9
CN:
该架构保留了可调耦合器方案,允许动态调整相邻量子比特之间的相互作用强度。这种可调性对于执行表面码纠错循环所需的高保真双量子比特门(如 CZ 或 iSWAP 门)至关重要 2。据报道,量子比特网格的平均连接数为 3.47,这反映了平面二维晶格的限制,其中边缘和角落的量子比特比内部量子比特拥有更少的邻居 2。这一连接性指标对于表面码的实现至关重要,因为表面码要求内部数据量子比特至少具有 4 的连接数才能与测量(辅助)量子比特有效地相互作用。在该网格上成功运行距离-7 的表面码证实了制造良率和控制保真度足以缓解晶格的拓扑限制 9。
2.2 Implications of Stabilized Qubits
EN:
The stabilization of qubits in the Willow processor goes beyond simple coherence time extension; it involves the suppression of "correlated error events." In many quantum systems, high-energy events (such as cosmic ray impacts or phonon propagation in the substrate) can cause bursts of errors that affect multiple qubits simultaneously.11 These correlated errors are particularly damaging to Quantum Error Correction (QEC) codes, which typically assume that errors occur independently on different qubits. Research indicates that Willow employs mitigation strategies to handle these burst events, although logical performance remains limited by rare correlated errors occurring approximately once every hour ($3 \times 10^9$ cycles).11 The ability to characterize and suppress these specific error modalities marks a maturation in system engineering, moving from optimizing single-qubit gates to optimizing the holistic stability of the qubit array against environmental and substrate-borne noise.11
CN:
Willow 处理器中量子比特的稳定性不仅仅是简单的相干时间延长;它还涉及对“相关错误事件”的抑制。在许多量子系统中,高能事件(如宇宙射线撞击或基底中的声子传播)可能导致同时影响多个量子比特的错误爆发 11。这些相关错误对量子纠错(QEC)码尤其具有破坏性,因为 QEC 通常假设错误独立地发生在不同的量子比特上。研究表明,Willow 采用了缓解策略来处理这些爆发事件,尽管逻辑性能仍然受到大约每小时发生一次($3 \times 10^9$ 个周期)的罕见相关错误的限制 11。表征和抑制这些特定错误模式的能力标志着系统工程的成熟,即从优化单量子比特门转向优化量子比特阵列针对环境和基底噪声的整体稳定性 11。
3. Quantum Error Correction: The Threshold Achievement
3.1 Theoretical Basis: The Surface Code
EN:
To understand the significance of Willow’s QEC achievement, one must first contextualize the surface code. The surface code is a topological quantum error-correcting code that encodes a "logical" qubit into the collective state of a grid of physical "data" qubits and "measurement" qubits.14 The system operates by repeatedly measuring "stabilizers"—parity checks that reveal whether an error (bit-flip or phase-flip) has occurred without collapsing the quantum state of the logical information.15 The "distance" of the code ($d$) refers to the minimum number of physical errors required to cause a logical error. A distance-$d$ code can correct $(d-1)/2$ errors.9 However, the overhead is significant: increasing the distance requires quadratically more physical qubits. Crucially, simply adding qubits increases the number of places where noise can enter. Therefore, QEC only works if the physical error rate is below a specific "threshold." Above this threshold, adding qubits makes the logical qubit worse. Below it, adding qubits makes the logical qubit better.4
CN:
要理解 Willow 在 QEC 方面成就的意义,首先必须了解表面码的背景。表面码是一种拓扑量子纠错码,它将一个“逻辑”量子比特编码到由物理“数据”量子比特和“测量”量子比特组成的网格的集体状态中 14。该系统通过重复测量“稳定子”——即揭示是否发生了错误(比特翻转或相位翻转)而不坍缩逻辑信息量子态的奇偶校验——来运行 15。代码的“距离”($d$)是指导致逻辑错误所需的最小物理错误数量。距离为 $d$ 的代码可以纠正 $(d-1)/2$ 个错误 9。然而,开销是巨大的:增加距离需要二次方级更多的物理量子比特。至关重要的是,简单地增加量子比特会增加噪声进入的场所。因此,只有当物理错误率低于特定的“阈值”时,QEC 才会起作用。高于此阈值,增加量子比特会使逻辑量子比特变差。低于此阈值,增加量子比特会使逻辑量子比特变好 4。
3.2 Below-Threshold Performance and Exponential Suppression
EN:
The definitive breakthrough of the Willow processor is the experimental demonstration of being "below threshold." Google researchers implemented surface codes of varying distances: distance-3 (on fewer qubits), distance-5 (on 72 qubits), and distance-7 (on 105 qubits).9 The data revealed that the logical error rate was successfully suppressed as the code size increased. Specifically, the logical error rate decreased by a factor of $\Lambda = 2.14 \pm 0.02$ for every increase in code distance of 2.9 This parameter, $\Lambda$, is the crucial figure of merit; as long as $\Lambda > 1$, the error rate drops exponentially with size.
CN:
Willow 处理器的决定性突破是实验演示了处于“阈值之下”。Google 研究人员实施了不同距离的表面码:距离-3(较少量子比特)、距离-5(72 个量子比特)和距离-7(105 个量子比特)9。数据显示,随着代码规模的增加,逻辑错误率被成功抑制。具体而言,代码距离每增加 2,逻辑错误率就降低 $\Lambda = 2.14 \pm 0.02$ 倍 9。参数 $\Lambda$ 是关键的品质因数;只要 $\Lambda > 1$,错误率就会随规模呈指数级下降。
EN:
For the distance-7 code, the system achieved a logical error rate of $0.143\% \pm 0.003\%$ per cycle.9 This performance is not only below the threshold but also represents a "beyond break-even" point where the logical qubit persists longer than the best individual physical qubit in the array—specifically, by a factor of $2.4 \pm 0.3$.9 Previous attempts by various groups had struggled to reach this break-even point, often finding that the overhead of the correction circuitry introduced more noise than it removed. The Willow result proves that the surface code architecture is physically viable for scaling. The implementation involved a real-time decoder with a latency of 63 $\mu$s, capable of interpreting the syndrome measurements and applying corrections (or updating the software reference frame) fast enough to keep pace with the quantum evolution.10
CN:
对于距离-7 代码,系统实现了每周期 $0.143\% \pm 0.003\%$ 的逻辑错误率 9。这一性能不仅低于阈值,而且代表了一个“超越盈亏平衡”点,即逻辑量子比特的存续时间比阵列中最好的单个物理量子比特还要长——具体来说,长了 $2.4 \pm 0.3$ 倍 9。此前各研究小组的尝试都在努力达到这一盈亏平衡点,往往发现纠错电路的开销引入的噪声比消除的还要多。Willow 的结果证明了表面码架构在物理上对于扩展是可行的。该实现涉及一个延迟为 63 $\mu$s 的实时解码器,能够足够快地解释伴息测量并应用校正(或更新软件参考系),以跟上量子演化的步伐 10。
4. Computational Supremacy: The 10 Septillion Year Benchmark
4.1 Random Circuit Sampling (RCS) Revisited
EN:
While QEC ensures long-term reliability, Google utilized the Random Circuit Sampling (RCS) benchmark to demonstrate raw computational power. RCS involves executing a sequence of random quantum gates on the qubits and measuring the final bitstring. The goal is to sample from the probability distribution of output states, which, due to quantum interference, is highly non-uniform (speckle pattern).16 Calculating this probability distribution classically involves contracting a tensor network of the circuit, a task that scales exponentially with the number of qubits ($N$) and the circuit depth.17
CN:
虽然 QEC 确保了长期可靠性,但 Google 利用随机电路采样(RCS)基准测试来展示原始计算能力。RCS 涉及在量子比特上执行一系列随机量子门并测量最终的比特串。目标是从输出状态的概率分布中进行采样,由于量子干涉,该分布是高度非均匀的(散斑图案)16。经典地计算这一概率分布涉及收缩电路的张量网络,这项任务随量子比特数量($N$)和电路深度的增加呈指数级扩展 17。
4.2 The Disparity: 5 Minutes vs. $10^{25}$ Years
EN:
The Willow processor performed an RCS benchmark that Google researchers claim would take the Frontier supercomputer—currently the world’s most powerful system with 1.68 exaflops of performance—approximately $10^{25}$ years (10 septillion years) to simulate.13 Willow completed this task in under five minutes.8 This claim represents a dramatic escalation from the 2019 Sycamore result, which estimated a 10,000-year classical runtime (later challenged and reduced to days by IBM and others using improved tensor contraction methods and secondary storage).19
CN:
Willow 处理器执行了一项 RCS 基准测试,Google 研究人员声称,要在当今世界上最强大的系统(拥有 1.68 EFlops 性能的 Frontier 超级计算机)上模拟该测试,大约需要 $10^{25}$ 年(10 秭年)13。Willow 在不到五分钟的时间内完成了这项任务 8。这一声明代表了相较于 2019 年 Sycamore 结果的急剧升级,当时的结果估计经典运行时间为 10,000 年(后来受到 IBM 和其他人使用改进的张量收缩方法和二级存储的挑战,缩短为数天)19。
EN:
The robustness of the $10^{25}$ year figure stems from the expanded Hilbert space of 105 qubits. The state space dimension is $2^{105}$, a number so vast that it renders RAM-limited classical simulation methods physically impossible. Even employing tensor network methods that trade time for memory, the computational cost remains prohibitive.2 Critics and independent researchers, such as Scott Aaronson, note that while classical algorithms always improve, the exponential gap provided by 100+ qubits creates a "complexity wall" that is exponentially harder to scale than the 53-qubit case.20 Verification of such a benchmark is performed on simplified instances (fewer qubits or less depth) to establish the "Linear Cross-Entropy Benchmark" (XEB) fidelity, which is then extrapolated to the full circuit.21
CN:
$10^{25}$ 年这一数字的鲁棒性源于 105 个量子比特扩展的希尔伯特空间。状态空间维度为 $2^{105}$,这个数字如此巨大,以至于使得受 RAM 限制的经典模拟方法在物理上变得不可能。即使采用以时间换空间的张量网络方法,计算成本仍然令人望而却步 2。批评者和独立研究人员(如 Scott Aaronson)指出,虽然经典算法总是在改进,但 100+ 量子比特提供的指数级差距建立了一道“复杂性墙”,其跨越难度比 53 量子比特的情况呈指数级增加 20。对此类基准的验证是在简化实例(较少量 子比特或较浅深度)上进行的,以建立“线性交叉熵基准”(XEB)保真度,然后将其外推至完整电路 21。
5. Verifiable Quantum Advantage: The Quantum Echoes Protocol
5.1 The Verification Problem
EN:
A profound epistemological issue arises with RCS: if a calculation takes $10^{25}$ years to check, how can one distinguish a correct quantum output from pure noise? This "verification gap" has been a central critique of quantum supremacy claims.22 To bridge this, Google introduced "Quantum Echoes," an algorithmic approach that provides a verifiable quantum advantage.1 Unlike RCS, which produces entropy, Quantum Echoes measure specific observables that can be cross-validated.
CN:
RCS 引发了一个深刻的认识论问题:如果一项计算需要 $10^{25}$ 年来检查,人们如何区分正确的量子输出与纯噪声?这种“验证差距”一直是针对量子霸权声明的核心批评 22。为了弥合这一差距,Google 引入了“量子回声”,这是一种提供可验证量子优势的算法方法 1。与产生熵的 RCS 不同,量子回声测量的是可以交叉验证的特定可观测量。
5.2 Mechanism: Out-of-Time-Order Correlators (OTOCs)
EN:
The physics of Quantum Echoes relies on Out-of-Time-Order Correlators (OTOCs). This concept originates from condensed matter physics and black hole thermodynamics, used to describe how information "scrambles" across a quantum system.22 The algorithm functions by simulating a "butterfly effect."
Forward Evolution ($U$): The system evolves forward in time, spreading entanglement.
Perturbation ($W$): A localized operator (like a Pauli gate) is applied to a single qubit.
Backward Evolution ($U^\dagger$): The system evolves backward in time.
Measurement ($V$): A measurement is taken to see if the system recovered its initial state.6
CN:
量子回声的物理学原理依赖于时间非有序相关子(OTOCs)。这一概念源于凝聚态物理学和黑洞热力学,用于描述信息如何在量子系统中“加扰” 22。该算法通过模拟“蝴蝶效应”来运行。
前向演化($U$): 系统在时间上向前演化,扩散纠缠。
微扰($W$): 对单个量子比特施加局部算符(如泡利门)。
后向演化($U^\dagger$): 系统在时间上向后演化。
测量($V$): 进行测量以观察系统是否恢复到初始状态 6。
EN:
In a perfectly reversible world without the perturbation, $U^\dagger U = I$, and the system returns to the start. However, the perturbation $W$ disrupts this. Because the system is chaotic (scrambling), the effect of $W$ spreads exponentially fast across all 105 qubits during the forward/backward cycle.22 The OTOC measures the magnitude of this spread—the "echo." If the quantum processor works correctly, the backward evolution refocuses the waves of information (like a time-reversal mirror), resulting in a constructive interference signal. If the processor is just noisy, the signal vanishes.6
CN:
在没有微扰的完美可逆世界中,$U^\dagger U = I$,系统回到起点。然而,微扰 $W$ 破坏了这一点。由于系统是混沌的(加扰),$W$ 的效应在前向/后向循环期间以指数速度扩散到所有 105 个量子比特 22。OTOC 测量这种扩散的幅度——即“回声”。如果量子处理器工作正常,后向演化会重新聚焦信息波(就像时间反转镜一样),从而产生相长干涉信号。如果处理器只是充满噪声,信号就会消失 6。
5.3 Applications in Molecular Dynamics and NMR
EN:
This capability is not merely abstract. The Willow team demonstrated that Quantum Echoes can be used as a "molecular ruler" to infer the geometry of molecules and study nuclear magnetic resonance (NMR) systems.5 In NMR, measuring correlations effectively allows scientists to "see" the distance between spins. Willow's ability to compute these echoes 13,000 times faster than a classical supercomputer allows for the simulation of complex molecular dynamics and Hamiltonian learning tasks that are classically intractable.5 This marks the first instance of a quantum advantage being applied to a problem with physical relevance (modeling nature) rather than a purely mathematical sampling problem.22
CN:
这种能力不仅仅是抽象的。Willow 团队演示了量子回声可以用作“分子尺”来推断分子的几何结构并研究核磁共振(NMR)系统 5。在 NMR 中,测量相关性有效地允许科学家“看到”自旋之间的距离。Willow 计算这些回声的速度比经典超级计算机快 13,000 倍,这使得模拟复杂的分子动力学和经典方法难以处理的哈密顿量学习任务成为可能 5。这标志着量子优势首次应用于具有物理相关性(模拟自然)的问题,而不仅仅是纯数学采样问题 22。
6. Interpretational Frameworks: The Multiverse Hypothesis
6.1 Hartmut Neven’s Provocation
EN:
The release of Willow was accompanied by provocative interpretational statements from Google Quantum AI lead Hartmut Neven. In the "Meet Willow" technical blog, Neven explicitly linked the $10^{25}$ year benchmark to the Many-Worlds Interpretation (MWI) of quantum mechanics. He wrote that the result "lends credence to the notion that quantum computation occurs in many parallel universes, in line with the idea that we live in a multiverse".7 This statement was not a casual metaphor but a deliberate reference to the theoretical work of physicist David Deutsch.25
CN:
Willow 的发布伴随着 Google Quantum AI 负责人 Hartmut Neven 发表的引发争议的解释性声明。在“遇见 Willow”技术博客中,Neven 明确将 $10^{25}$ 年的基准与量子力学的多世界诠释(MWI)联系起来。他写道,这一结果“为量子计算发生在许多平行宇宙中的观点增添了可信度,这与我们生活在多重宇宙中的想法相一致” 7。这一声明并非随意的隐喻,而是特指物理学家 David Deutsch 的理论工作 25。
6.2 The Deutsch-Everett Perspective
EN:
David Deutsch, a pioneer of quantum computation, argued in The Fabric of Reality that the immense computational power of algorithms like Shor’s algorithm implies a resource usage that exceeds the physical capacity of a single universe. If a quantum computer can factor a number utilizing $2^{105}$ basis states simultaneously, where is this computation happening? Deutsch argues that the computation is distributed across parallel branches of the multiverse.27 In this view, the 105 qubits of Willow do not just exist as isolated metal on a chip in California; they exist as a differentiation across $2^{105}$ distinct histories. The "interference" that yields the final answer is the interaction between these parallel realities.27 Neven suggests that the sheer impossibility of the RCS task in classical spacetime (requiring eons) serves as empirical support for this "computational multiverse".29
CN:
量子计算先驱 David Deutsch 在《真实原本》中论证,像 Shor 算法这样的算法所具有的巨大计算能力意味着其资源使用量超过了单一宇宙的物理容量。如果一台量子计算机可以同时利用 $2^{105}$ 个基态对一个数字进行因数分解,那么这种计算发生在哪里?Deutsch 认为,计算分布在多重宇宙的平行分支中 27。在这个观点中,Willow 的 105 个量子比特不仅仅是作为加利福尼亚芯片上的孤立金属存在的;它们作为 $2^{105}$ 个不同历史之间的差异而存在。产生最终答案的“干涉”正是这些平行现实之间的相互作用 27。Neven 认为,RCS 任务在经典时空中的绝对不可能性(需要无数个世纪)为这种“计算多重宇宙”提供了经验支持 29。
6.3 Theoretical Counterpoints and Skepticism
EN:
This interpretation remains highly contentious. The Copenhagen interpretation, for instance, treats the wavefunction as a probability amplitude without requiring ontological reality for the unobserved states. Quantum Bayesianism (QBism) views the state as a representation of observer knowledge. Scott Aaronson, a leading theoretical computer scientist, has engaged directly with this debate in the context of Willow.30 Aaronson argues that the "multiverse" language, while mathematically isomorphic to the vector space description, is not "proven" by the speed of the chip.30 He emphasizes that quantum computers utilize interference—positive and negative amplitudes canceling each other out—rather than parallel brute-force computation.30 From this perspective, the calculation happens within the high-dimensional Hilbert space of a single universe, and the "parallel worlds" are merely a colorful label for the orthogonal basis vectors of that space. The success of Willow confirms the Schrödinger equation holds for 105 particles, but it does not resolve the metaphysical status of the other branches.28
CN:
这种解释仍然极具争议。例如,哥本哈根诠释将波函数视为概率幅,而不要求未观察到的状态具有本体论现实性。量子贝叶斯主义(QBism)将状态视为观察者知识的表征。领先的理论计算机科学家 Scott Aaronson 在 Willow 的背景下直接参与了这场辩论 30。Aaronson 认为,虽然“多重宇宙”的语言在数学上与向量空间描述同构,但芯片的速度并不能“证明”它 30。他强调,量子计算机利用的是干涉——正负振幅相互抵消——而不是并行的暴力计算 30。从这个角度来看,计算发生在单一宇宙的高维希尔伯特空间内,“平行世界”仅仅是该空间正交基向量的一个生动标签。Willow 的成功证实了薛定谔方程对 105 个粒子成立,但它并没有解决其他分支的形而上学地位 28。
7. Future Trajectories and Strategic Implications
7.1 The Path to Large-Scale Fault Tolerance
EN:
The successful demonstration of below-threshold error correction sets a clear roadmap for the next decade. Google’s immediate goal is to scale the logical qubit further, increasing the code distance to achieve error rates low enough for executing extremely deep algorithms.5 The "Lambda" factor of 2.14 suggests that a code distance of $d=17$ or $d=25$ could yield a logical error rate of $10^{-9}$ or lower, sufficient for running Shor’s algorithm or complex chemical simulations.9 The challenge now shifts from "can we correct errors?" to "can we scale the control hardware to millions of physical qubits without degrading the $\Lambda$ factor?".3
CN:
阈值以下纠错的成功演示为未来十年制定了清晰的路线图。Google 的近期目标是进一步扩充逻辑量子比特,增加代码距离以实现足够低的错误率,从而执行极深度的算法 5。2.14 的“Lambda”因子表明,代码距离 $d=17$ 或 $d=25$ 可能会产生 $10^{-9}$ 或更低的逻辑错误率,足以运行 Shor 算法或复杂的化学模拟 9。现在的挑战从“我们能纠正错误吗?”转变为“我们能否在不降低 $\Lambda$ 因子的情况下,将控制硬件扩展到数百万个物理量子比特?”3。
7.2 Cryptographic and Industrial Impact
EN:
While Willow represents a massive leap, Google spokespeople and independent analysts confirm that the threat to RSA encryption is still roughly a decade away.2 Breaking 2048-bit RSA requires thousands of logical qubits, which implies millions of physical qubits given current surface code overheads.32 However, the "Quantum Echoes" capability opens immediate doors for industrial applications in materials science and drug discovery by simulating molecular interactions (Hamiltonians) that are classically invisible.5 This transition from "supremacy" (useless but hard math) to "utility" (useful physics simulations) marks the beginning of the commercial quantum era.6
CN:
虽然 Willow 代表了一个巨大的飞跃,但 Google 发言人和独立分析师证实,对 RSA 加密的威胁大约还需要十年时间 2。破解 2048 位 RSA 需要数千个逻辑量子比特,考虑到目前的表面码开销,这意味着需要数百万个物理量子比特 32。然而,“量子回声”的能力通过模拟经典方法不可见的分子相互作用(哈密顿量),立即为材料科学和药物发现领域的工业应用打开了大门 5。这种从“霸权”(无用但困难的数学)到“实用”(有用的物理模拟)的转变标志着商业量子时代的开始 6。
8. Conclusion
EN:
The Google Willow processor stands as a defining artifact of 21st-century physics and engineering. By demonstrating quantum error correction below the surface code threshold, it has empirically validated the feasibility of fault-tolerant quantum computing, effectively retiring the "noise bottleneck" as a fundamental impossibility argument. Simultaneously, its execution of the RCS benchmark at a speed $10^{25}$ years faster than classical limits forces a confrontation with the limits of computation and the structure of physical reality. Whether one accepts the Multiverse hypothesis as the explanation for this power or views it as the high-dimensional manipulation of information, Willow has irrevocably altered the landscape of information processing. The era of asking if quantum computers can work is over; the era of determining what they will build—and which universe they build it in—has begun.
CN:
Google Willow 处理器是 21 世纪物理学和工程学的标志性产物。通过演示表面码阈值以下的量子纠错,它从经验上验证了容错量子计算的可行性,有效地终结了作为根本性不可能论点的“噪声瓶颈”。同时,它以比经典极限快 $10^{25}$ 年的速度执行 RCS 基准测试,迫使人们直面计算的极限和物理现实的结构。无论人们是接受多重宇宙假说作为这种能力的解释,还是将其视为信息的高维操纵,Willow 都不可逆转地改变了信息处理的格局。询问量子计算机是否能工作的时代已经结束;决定它们将构建什么——以及在哪个宇宙中构建——的时代已经开始。
Works cited
Google Quantum AI, accessed November 20, 2025,
Willow processor - Wikipedia, accessed November 20, 2025,
Mind the gaps: The fraught road to quantum advantage - arXiv, accessed November 20, 2025,
Making quantum error correction work - Google Research, accessed November 20, 2025,
Our Quantum Echoes algorithm is a big step toward real-world applications for quantum computing - Google Blog, accessed November 20, 2025,
A verifiable quantum advantage - Google Research, accessed November 20, 2025,
We're a step closer toward a working quantum system and neuromorphic computing – either would revolutionize tech forever | IT Pro - ITPro, accessed November 20, 2025,
Could Google's Quantum Chip "Willow" Unlock the Multiverse? - VIVE Blog, accessed November 20, 2025,
Research Publications | Google Quantum AI, accessed November 20, 2025,
(PDF) Notes on Google Willow (2024) aka "Quantum Error Correction Below the Surface Code Threshold" - ResearchGate, accessed November 20, 2025,
Quantum error correction below the surface code threshold - Princeton University, accessed November 20, 2025,
Quantum error correction below the surface code threshold : r/QuantumComputing - Reddit, accessed November 20, 2025,
Get ready to explore quantum science and technology in 2025!, accessed November 20, 2025,
Google's Willow Quantum Computing Chip: A Game Changer? | Towards Data Science, accessed November 20, 2025,
EXPLAINING THE PAPER: QUANTUM ERROR CORRECTION BELOW THE SURFACE CODE THRESHOLD, accessed November 20, 2025,
Monte Carlo simulation of random circuit sampling in quantum computing - arXiv, accessed November 20, 2025,
Advancements in superconducting quantum computing | National Science Review | Oxford Academic, accessed November 20, 2025,
Google's new quantum computer chip Willow infinitely outpaces the world's fastest supercomputers - IEEE ComSoc Technology Blog, accessed November 20, 2025,
Google Claims Quantum Error Correction Milestone With “Willow” Chip - The Next Platform, accessed November 20, 2025,
Google's Willow Quantum Chip: With 105 qubits and real-time error correction, Willow solved a task in 5 minutes that would take classical supercomputers billions of years, marking a breakthrough in scalable quantum computing. : r/Damnthatsinteresting - Reddit, accessed November 20, 2025,
Blog Archive » The Google Willow thing - Shtetl-Optimized, accessed November 20, 2025,
Quantum 'echoes' reveal the potential of Google's quantum computer - Science News, accessed November 20, 2025,
Quantum Echoes: Towards real world applications - YouTube, accessed November 20, 2025,
Google Quantum AI Shows 13,000× Speedup Over World's Fastest Supercomputer in Physics Simulation, accessed November 20, 2025,
Quantum theory, the Church–Turing principle and the universal quantum computer | Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences - Journals, accessed November 20, 2025,
Google Willow Quantum Chip Sparks Debate on Multiverse Theory, accessed November 20, 2025,
David Deutsch – making more sense than common sense - Mewburn Ellis, accessed November 20, 2025,
Can anyone explain what's with Google saying the fact that willow can solve things so quickly is a possibility of multiverse? : r/QuantumComputing - Reddit, accessed November 20, 2025,
Did Google Just Prove That the Multiverse Is Real? - Vice Magazine, accessed November 20, 2025,
December 2024 - Shtetl-Optimized, accessed November 20, 2025,
Blog Archive » Quantum computing: too much to handle! - Shtetl-Optimized, accessed November 20, 2025,
The Race Toward FTQC: Ocelot, Majorana, Willow, Heron, Zuchongzhi - PostQuantum.com, accessed November 20, 2025,