区块链量子安全评估与迁移
Quantum Hegemony and Distributed Ledger Vulnerability: An Exhaustive Analysis of Cryptographic Obsolescence in the Post-Willow Era
量子霸权与分布式账本脆弱性:后 Willow 时代加密过时性的详尽分析
Executive Summary
执行摘要
The intersection of quantum computing advancement and blockchain immutability has transitioned from a theoretical horizon to an imminent operational risk. The cryptographic primitives underwriting the security of Bitcoin (BTC), Ethereum (ETH), and Solana (SOL)—specifically Elliptic Curve Cryptography (ECC) on the secp256k1 and Curve25519 curves—are facing a rapidly accelerating deprecation timeline. This report synthesizes recent breakthroughs, including Google Quantum AI’s release of the "Willow" processor and QuEra’s logical qubit advancements, with high-level strategic warnings from Ethereum co-founder Vitalik Buterin. The analysis indicates that the "Q-Day" horizon—the point at which quantum hardware can decrypt classical ledgers—may intersect with the global geopolitical cycle as early as 2028. While Ethereum struggles with the "ossification paradox" to engineer a migration path, Solana has deployed tactical, albeit friction-heavy, countermeasures via the Winternitz Vault. The following document provides a comprehensive technical, strategic, and economic assessment of this existential threat.
量子计算的进步与区块链不可变性之间的交集,已从理论上的地平线转变为迫在眉睫的运营风险。支撑比特币 (BTC)、以太坊 (ETH) 和 Solana (SOL) 安全性的加密原语——特别是 secp256k1 和 Curve25519 曲线上的椭圆曲线密码学 (ECC)——正面临加速淘汰的时间表。本报告综合了包括 Google Quantum AI 发布 "Willow" 处理器和 QuEra 逻辑量子比特进展在内的最新突破,以及以太坊联合创始人 Vitalik Buterin 的高层战略警告。分析表明,“Q日”地平线——即量子硬件能够解密经典账本的时间点——可能最早在 2028 年与全球地缘政治周期相交。当以太坊在“固化悖论”中挣扎以设计迁移路径时,Solana 已经通过 Winternitz Vault 部署了战术性但摩擦力较大的对策。以下文件对这一生存威胁进行了全面的技术、战略和经济评估。
1. The Acceleration of Quantum Hardware: Beyond Linear Projections
1. 量子硬件的加速:超越线性预测
1.1 Google’s "Willow" and the Double-Exponential Trajectory
1.1 Google 的 "Willow" 与双指数轨迹
In December 2024, the landscape of computational physics was fundamentally altered by Google Quantum AI's unveiling of the "Willow" processor. While the metric of 105 superconducting transmon qubits might appear modest compared to theoretical requirements for breaking encryption, the qualitative leap in error correlation and operational fidelity marks a critical inflection point.1 The Willow chip demonstrated "verifiable quantum advantage" by executing the "Quantum Echoes" algorithm—a task involving the out-of-order time correlator (OTOC)—in under five minutes. In stark contrast, the same computation would require septillions of years on one of the world's most powerful classical supercomputers, Frontier.2
2024 年 12 月,Google Quantum AI 揭晓的 "Willow" 处理器从根本上改变了计算物理学的格局。虽然与破解加密所需的理论要求相比,105 个超导 Transmon 量子比特的指标可能显得微不足道,但在误差相关性和操作保真度方面的质的飞跃标志着一个关键的转折点 1。Willow 芯片通过在五分钟内执行“量子回声”(Quantum Echoes)算法——一项涉及乱序时间相关器(OTOC)的任务——展示了“可验证的量子优势”。形成鲜明对比的是,同样的计算在世界上最强大的经典超级计算机之一 Frontier 上需要数万亿年才能完成 2。
The significance of this breakthrough extends beyond speed. Google’s research asserts that quantum processor performance is now diverging from classical capabilities at a "double exponential rate".3 This non-linear acceleration invalidates traditional security roadmaps that assume a gradual, Moore's Law-style evolution of quantum capabilities. The ability to verify results—ensuring that the quantum computer is not merely outputting noise but performing reliable computation—lays the groundwork for the scalable error correction needed to run Shor's algorithm. The implication for blockchain security is profound: the "buffer time" previously assumed to exist between experimental quantum supremacy and practical cryptographic breaking is collapsing.3
这一突破的意义超越了速度。Google 的研究断言,量子处理器的性能现在正以“双指数速率”与经典能力分道扬镳 3。这种非线性加速使得传统的安全路线图失效,因为这些路线图假设量子能力是按照摩尔定律式的渐进演变。验证结果的能力——确保量子计算机不仅仅是在输出噪声,而是在执行可靠的计算——为运行 Shor 算法所需的可扩展纠错奠定了基础。这对区块链安全的影响是深远的:以前假设存在于实验性量子霸权与实际加密破解之间的“缓冲时间”正在崩溃 3。
1.2 The Rise of Logical Qubits and Neutral Atom Architectures
1.2 逻辑量子比特与中性原子架构的兴起
Parallel to Google’s superconducting approach, the collaboration between Harvard University, QuEra Computing, MIT, and NIST has yielded significant progress in neutral-atom quantum computing. In late 2023, this consortium successfully executed complex, error-corrected algorithms on 48 logical qubits.5 The distinction between physical and logical qubits is paramount in this analysis. Physical qubits are prone to environmental noise and decoherence; logical qubits are error-corrected assemblies of many physical qubits that function as a stable unit of information.6
与 Google 的超导方法并行,哈佛大学、QuEra Computing、麻省理工学院和美国国家标准与技术研究院(NIST)之间的合作在中性原子量子计算方面取得了重大进展。2023 年底,该联盟成功在 48 个逻辑量子比特上执行了复杂的、纠错的算法 5。在此分析中,物理量子比特与逻辑量子比特之间的区别至关重要。物理量子比特容易受到环境噪声和退相干的影响;逻辑量子比特是由许多物理量子比特组成的纠错集合,作为一个稳定的信息单位发挥作用.6
The achievement of 48 logical qubits is a critical milestone on the path to the thousands required to break secp256k1. Furthermore, advancements in error correction codes, such as the "color codes" implemented by Google, offer a more resource-efficient alternative to the traditional surface code. These codes reduce the number of physical qubits required per logical qubit and increase the speed of logical operations, further compressing the timeline for a cryptographic breach.8 The ability to perform hundreds of entangling logical operations indicates that the engineering challenges are shifting from fundamental physics to scaling and control systems.5
实现 48 个逻辑量子比特是通往破解 secp256k1 所需数千个量子比特道路上的关键里程碑。此外,纠错码的进步,例如 Google 实施的“颜色码”(color codes),提供了比传统表面码更具资源效率的替代方案。这些代码减少了每个逻辑量子比特所需的物理量子比特数量,并提高了逻辑运算的速度,进一步压缩了加密破解的时间线 8。执行数百次纠缠逻辑操作的能力表明,工程挑战正从基础物理学转向扩展和控制系统 5。
1.3 Comparative Hardware Analysis
1.3 硬件比较分析
The following table summarizes the divergent yet convergent approaches to achieving the necessary computational density for breaking blockchain encryption.
下表总结了为实现破解区块链加密所需的计算密度而采取的殊途同归的方法。
2. The Mathematical Vulnerability: Deconstructing the Attack Surface
2. 数学脆弱性:解构攻击面
2.1 Shor’s Algorithm and the Discrete Logarithm Problem
2.1 Shor 算法与离散对数问题
The security of the entire cryptocurrency ecosystem is predicated on the computational intractability of the Discrete Logarithm Problem (DLP) over elliptic curves. For Bitcoin and Ethereum, this is the secp256k1 curve. Classical computers must use algorithms like Pollard's rho, which require exponential time relative to the key size. However, Shor's algorithm exploits the quantum mechanical property of superposition to find the period of a function, solving the DLP in polynomial time. This effectively reduces the security of a 256-bit elliptic curve key from "impossibly hard" to "computationally trivial" given sufficient quantum resources.11
整个加密货币生态系统的安全性建立在椭圆曲线上离散对数问题(DLP)的计算难解性之上。对于比特币和以太坊,这是 secp256k1 曲线。经典计算机必须使用像 Pollard's rho 这样的算法,其所需时间与密钥大小呈指数关系。然而,Shor 算法利用叠加的量子力学特性来寻找函数的周期,从而在多项式时间内解决 DLP。在拥有足够量子资源的情况下,这有效地将 256 位椭圆曲线密钥的安全性从“不可能破解”降低为“计算上微不足道” 11。
2.2 Precise Resource Estimation for secp256k1
2.2 secp256k1 的精确资源估算
Research conducted by Microsoft researchers Roetteler, Naehrig, Svore, and Lauter provides the definitive mathematical formula for this vulnerability. To compute discrete logarithms on an elliptic curve defined over an $n$-bit prime field, a quantum computer requires:
$$9n + 2\lceil\log_2(n)\rceil + 10 \text{ logical qubits}$$
For the $n=256$ case of Bitcoin and Ethereum, this equates to approximately 2,330 logical qubits.11
由微软研究人员 Roetteler, Naehrig, Svore 和 Lauter 进行的研究为这种脆弱性提供了决定性的数学公式。为了在定义于 $n$ 位素数域的椭圆曲线上计算离散对数,量子计算机需要:
$$9n + 2\lceil\log_2(n)\rceil + 10 \text{ 个逻辑量子比特}$$
对于比特币和以太坊的 $n=256$ 情况,这相当于大约 2,330 个逻辑量子比特 11。
While the qubit count is the primary metric, the computational depth—measured in Toffoli gates—defines the runtime. The estimated circuit depth is:
$$448 n^3 \log_2(n) + 4090 n^3 \text{ Toffoli gates}$$
This substantial gate count necessitates highly stable qubits that can maintain coherence over long operational cycles. However, refinements in quantum addition circuits and windowing techniques are continuously reducing these requirements, optimizing the "cost" of an attack.14 The realization that ECC is an "easier target" than RSA (which requires significantly more qubits despite larger key sizes) places blockchain at the forefront of the quantum threat queue.11
虽然量子比特数量是主要指标,但计算深度——以 Toffoli 门衡量——定义了运行时间。估计的电路深度为:
$$448 n^3 \log_2(n) + 4090 n^3 \text{ 个 Toffoli 门}$$
如此巨大的门数量需要高度稳定的量子比特,以便在长操作周期内保持相干性。然而,量子加法电路和窗口技术的改进正在不断降低这些要求,优化攻击的“成本” 14。意识到 ECC 是比 RSA(尽管密钥尺寸更大,但需要更多量子比特)“更容易的目标”,这使得区块链处于量子威胁队列的最前沿 11。
3. The Cat Qubit Threat: A Specialized Attack Vector
3. 猫量子比特威胁:一种专门的攻击向量
3.1 The 9-Hour Decryption Scenario
3.1 9小时解密场景
While general-purpose quantum processors like Willow garner headlines, specialized architectures may pose a more immediate threat to specific mathematical problems. "Cat qubits" are a novel type of superconducting qubit that stabilizes against bit-flip errors exponentially with the average number of photons, leaving only phase-flip errors to be corrected by simple repetition codes.9
虽然像 Willow 这样的通用量子处理器占据了头条新闻,但专用架构可能对特定的数学问题构成更直接的威胁。“猫量子比特”是一种新型的超导量子比特,它随着光子平均数量的增加呈指数级稳定,以防止比特翻转错误,只留下相翻转错误需通过简单的重复码进行纠正 9。
A landmark study by Gouzien et al. (2023/2025) explicitly modeled the cost of breaking a 256-bit elliptic curve key using this architecture. The results are alarming for the blockchain industry:
Resource Requirement: 126,133 cat qubits.
Time to Break: Approximately 9 hours.
Operational Parameters: A cycle time of 500 ns and a 2D grid layout with nearest-neighbor connectivity.9
Gouzien 等人(2023/2025)的一项具有里程碑意义的研究明确模拟了使用该架构破解 256 位椭圆曲线密钥的成本。结果对区块链行业来说令人震惊:
资源需求: 126,133 个猫量子比特。
破解时间: 大约 9 小时。
操作参数: 500 ns 的周期时间和具有最近邻连接的 2D 网格布局 9。
3.2 Implications for Block Confirmation and Reaction Time
3.2 对区块确认和反应时间的影响
The 9-hour timeframe is critical because it falls within the operational window of high-value DeFi interactions and centralized exchange withdrawals. If an attacker can derive a private key from a public key in 9 hours, they can potentially:
Identify a high-value transaction in the mempool or a recently confirmed block.
Compute the private key.
Broadcast a competing transaction with a higher fee (front-running) or drain the remaining funds in the address before the owner can react.
9 小时的时间框架至关重要,因为它处于高价值 DeFi 交互和中心化交易所提款的操作窗口内。如果攻击者能在 9 小时内从公钥推导出私钥,他们可能:
在内存池或最近确认的区块中识别高价值交易。
计算私钥。
广播一笔费用更高的竞争交易(抢先交易),或者在所有者做出反应之前耗尽地址中的剩余资金。
Furthermore, the use of magic state distillation and gate teleportation in this architecture allows for all-to-all connectivity between logical qubits, optimizing the execution of Shor's algorithm specifically for the algebraic structure of elliptic curves.9 This suggests that the first viable quantum attack on Bitcoin or Ethereum may not come from a massive, general-purpose supercomputer, but from a smaller, purpose-built rig using cat qubits.
此外,在该架构中使用魔态蒸馏和门隐形传态允许逻辑量子比特之间的全对全连接,专门针对椭圆曲线的代数结构优化 Shor 算法的执行 9。这表明,对比特币或以太坊的第一次可行的量子攻击可能不是来自大型通用超级计算机,而是来自使用猫量子比特的小型专用设备。
4. Ethereum (ETH): The "Q-Day" Roadmap and the Ossification Paradox
4. 以太坊 (ETH):“Q日”路线图与固化悖论
4.1 Vitalik Buterin’s 2028 Prediction
4.1 Vitalik Buterin 的 2028 年预测
Ethereum co-founder Vitalik Buterin has introduced a specific and geopolitically anchored timeline for the quantum threat. Speaking at Devconnect and referencing data from the prediction market Metaculus, Buterin warned that elliptic curve cryptography could be compromised before the 2028 U.S. presidential election.17 He assigned a probability of roughly 20% by 2030 for the arrival of quantum computers capable of breaking today's cryptography.19
以太坊联合创始人 Vitalik Buterin 为量子威胁引入了一个具体的、与地缘政治挂钩的时间表。在 Devconnect 上发言并引用预测市场 Metaculus 的数据时,Buterin 警告说,椭圆曲线密码学可能会在 2028 年美国总统大选之前被攻破 17。他认为,能够破解当今密码学的量子计算机在 2030 年前 到来的概率约为 20% 19。
This specific framing—linking cryptographic decay to a political cycle—underscores the urgency. It suggests a window of less than four years for the Ethereum ecosystem to research, test, and deploy a quantum-resistant upgrade. Buterin’s commentary implies that failure to transition within this window could lead to a scenario where user funds are stolen or transactions forged at scale, posing an existential risk to the network's integrity.18
这种具体的框架——将加密衰退与政治周期联系起来——突显了紧迫性。这表明以太坊生态系统只有不到四年的窗口期来研究、测试和部署抗量子升级。Buterin 的评论暗示,如果未能在该窗口期内完成过渡,可能会导致用户资金被盗或交易被大规模伪造的情况,对网络的完整性构成生存风险 18。
4.2 The Strategic Conflict: Ossification vs. Agility
4.2 战略冲突:固化与敏捷性
A profound tension currently defines Ethereum’s architectural roadmap. On one hand, Buterin advocates for "ossification"—the idea that the Layer 1 (base layer) protocol should slow down changes and become immutable to ensure long-term stability and security, pushing innovation to Layer 2 solutions.17 On the other hand, the quantum threat necessitates a radical, intrusive change to the very heart of the protocol: the signature scheme.
目前,以太坊的架构路线图中存在着一种深刻的张力。一方面,Buterin 提倡“固化”——即第一层(基础层)协议应放慢变革步伐并变得不可变,以确保长期稳定性和安全性,将创新推向第二层解决方案 17。另一方面,量子威胁需要对协议的核心——签名方案——进行彻底的、侵入性的改变。
This creates the "Ossification Paradox." To survive quantum computing, Ethereum cannot ossify yet. It must undergo at least one more "systemic surgery" to replace secp256k1 with a post-quantum standard (such as lattice-based cryptography or STARK-based signatures). Buterin has stated that "elliptic curves are going to die," and that the ecosystem must coordinate to migrate.17 This migration contradicts the ethos of stability, as it forces every user to take active steps to secure their assets, potentially leading to a chaotic transition period where dormant funds are left vulnerable.
这这就产生了“固化悖论”。为了在量子计算中生存,以太坊目前还不能固化。它必须至少再经历一次“系统性手术”,用后量子标准(如基于格的密码学或基于 STARK 的签名)替换 secp256k1。Buterin 曾表示“椭圆曲线将会消亡”,生态系统必须协调迁移 17。这种迁移与稳定的精神相矛盾,因为它迫使每个用户采取积极措施保护其资产,可能导致混乱的过渡期,使休眠资金处于弱势。
5. Solana (SOL): Tactical Defense via Winternitz Vaults
5. Solana (SOL):通过 Winternitz Vault 进行战术防御
5.1 Mechanics of the Winternitz One-Time Signature (WOTS)
5.1 Winternitz 一次性签名 (WOTS) 的机制
In response to the looming threat, the Solana ecosystem has moved beyond theoretical roadmaps to actual implementation. The "Solana Winternitz Vault," developed by Dean Little, utilizes Winternitz One-Time Signatures (WOTS) to provide immediate quantum resistance.21
为了应对迫在眉睫的威胁,Solana 生态系统已经超越了理论路线图,进入了实际实施阶段。由 Dean Little 开发的 "Solana Winternitz Vault" 利用 Winternitz 一次性签名 (WOTS) 提供即时的抗量子能力 21。
Unlike ECC, which relies on the hardness of the discrete logarithm problem, WOTS relies on the preimage resistance of hash functions (specifically Keccak256 in this implementation). Even a quantum computer running Grover's algorithm can only achieve a quadratic speedup against hash functions, meaning that increasing the hash output length effectively negates the quantum advantage.23 The Solana implementation offers 224-bits of preimage resistance, which is considered robust against foreseeable quantum attacks.23
与依赖离散对数问题难度的 ECC 不同,WOTS 依赖于哈希函数的 原像抗性(在此实现中具体为 Keccak256)。即使运行 Grover 算法的量子计算机也只能对哈希函数实现二次加速,这意味着增加哈希输出长度可以有效地抵消量子优势 23。Solana 的实现提供了 224 位的原像抗性,这被认为可以抵御可预见的量子攻击 23。
The mechanism involves generating a private key comprising 32 scalars, hashing each one 256 times to create a public key. To sign a message, the private scalars are hashed a specific number of times corresponding to the message's content. Verifying the signature involves hashing the remaining times to check if it matches the public key.24
该机制涉及生成一个包含 32 个标量的私钥,并将每个标量哈希 256 次以创建公钥。要签署消息,私钥标量将根据消息内容被哈希特定次数。验证签名涉及哈希剩余的次数,以检查它是否与公钥匹配 24。
5.2 The Usability Trade-off: Statefulness and Ephemerality
5.2 可用性权衡:有状态性与短暂性
The deployment of WOTS on Solana illustrates the severe "usability tax" of current post-quantum solutions. WOTS keys degrade in security immediately after use; parts of the private key are revealed during the signing process. Therefore, the Solana Winternitz Vault is stateful and ephemeral:
A vault can only sign one transaction.
Once a transaction is signed, the vault is considered "closed" or compromised.
To continue transacting, the user must essentially create a new vault and transfer the remainder of the funds to it as part of the transaction.22
WOTS 在 Solana 上的部署说明了当前后量子解决方案面临严峻的“可用性税”。WOTS 密钥在使用后安全性立即下降;私钥的部分内容在签名过程中被泄露。因此,Solana Winternitz Vault 是 有状态且短暂的:
一个保险库只能签署 一笔 交易。
一旦交易被签署,该保险库就被视为“已关闭”或已受损。
为了继续交易,用户实质上必须创建一个新的保险库,并将剩余资金作为交易的一部分转移到其中 22。
This fundamentally breaks the user experience of modern crypto wallets, which rely on static, reusable identities (addresses). It transforms asset management into a recursive process of creating and destroying accounts. Furthermore, this is an optional feature, meaning the network itself remains on the Ed25519 standard, leaving the vast majority of users who do not opt-in vulnerable.21 While technically secure, the friction suggests that such solutions may primarily serve institutional custodians ("smart money") rather than retail users.
这从根本上打破了现代加密钱包的用户体验,后者依赖于静态的、可重复使用的身份(地址)。它将资产管理转变为创建和销毁账户的递归过程。此外,这是一项 可选 功能,意味着网络本身仍处于 Ed25519 标准,使得绝大多数未选择加入的用户处于弱势 21。虽然在技术上是安全的,但这种摩擦表明,此类解决方案可能主要服务于机构托管人(“聪明的钱”),而不是散户用户。
6. Structural Readiness Comparison: BTC vs. ETH vs. SOL
6. 结构准备情况比较:BTC vs. ETH vs. SOL
The following analysis juxtaposes the readiness of the three major chains, factoring in both technical capability and governance agility.
以下分析对比了三大主要链的准备情况,同时考虑了技术能力和治理敏捷性。
The data indicates a significant divergence. Bitcoin, often praised for its stability, is arguably the most vulnerable due to its lack of expressivity and difficult governance process for radical upgrades. Ethereum recognizes the threat but is hampered by the complexity of its state and the conflicting desire to ossify. Solana, leveraging its high-throughput architecture and developer agility, has moved fastest to provide a user-opt-in solution, effectively outsourcing the security decision to the end-user.
数据表明存在显著分歧。比特币通常因其稳定性而受到赞扬,但由于缺乏表达能力和彻底升级的治理过程困难,它可能是最脆弱的。以太坊认识到了这一威胁,但受到其状态复杂性和相互冲突的固化愿望的阻碍。Solana 利用其高吞吐量架构和开发者敏捷性,最快地提供了用户选择加入的解决方案,有效地将安全决策外包给最终用户。
7. Geopolitical and Economic Implications: The "Harvest Now, Decrypt Later" Risk
7. 地缘政治与经济影响:“现在收获,稍后解密”风险
7.1 The 2028 US Election Context
7.1 2028 年美国大选背景
Vitalik Buterin’s specific reference to the 2028 US election is not merely a timestamp but a geopolitical indicator.17 It suggests that quantum capability is viewed as a strategic state asset. In a scenario where a nation-state achieves "Q-Day" capabilities covertly, the blockchain ecosystem becomes a prime target for destabilization or illicit financing. The ability to forge signatures on the Bitcoin or Ethereum network would essentially allow for the printing of infinite capital, triggering a collapse of the asset class and potentially impacting global financial liquidity.
Vitalik Buterin 具体提到 2028 年美国大选不仅仅是一个时间戳,更是一个地缘政治指标 17。这表明量子能力被视为一种战略性国家资产。在民族国家秘密实现“Q日”能力的情况下,区块链生态系统将成为破坏稳定或非法融资的主要目标。在比特币或以太坊网络上伪造签名的能力实际上将允许无限印钞,引发资产类别的崩溃,并可能影响全球金融流动性。
7.2 The Legacy Address Problem
7.2 遗留地址问题
A critical second-order insight derived from the migration mandates is the issue of "lost" coins. Millions of BTC and ETH are held in "Satoshi-era" or early pre-mine addresses that have been dormant for over a decade. If the protocols mandate a migration to quantum-resistant addresses (e.g., moving from an ECC address to a Lattice-based address), these dormant funds cannot move because the owners are likely without access to the keys.
从迁移指令中得出的一个关键的二阶洞察是“丢失”代币的问题。数百万 BTC 和 ETH 存在于“中本聪时代”或早期的预挖地址中,这些地址已经休眠了十多年。如果协议强制迁移到抗量子地址(例如,从 ECC 地址移动到基于格的地址),这些休眠资金 无法 移动,因为所有者可能无法访问密钥。
This creates a bifurcation in the ledger:
Migrated Funds: Secure against quantum attacks.
Legacy Funds: Vulnerable to quantum derivation.
这就造成了账本的分叉:
已迁移资金: 抵御量子攻击。
遗留资金: 易受量子推导影响。
Once quantum computers scale, they will be able to derive the private keys for these massive, dormant treasuries. This implies that the "maximum supply" caps of cryptocurrencies (e.g., 21 million BTC) effectively become liquid again, as quantum actors "unlock" and dump previously lost coins onto the market. This prospect introduces a massive, hidden inflationary risk to the tokenomics of every non-migrated blockchain.
一旦量子计算机形成规模,它们将能够推导出这些巨大的休眠金库的私钥。这意味着加密货币的“最大供应量”上限(例如 2100 万 BTC)实际上再次变得流动,因为量子参与者“解锁”并向市场抛售以前丢失的代币。这一前景为每一个未迁移的区块链的代币经济学引入了巨大的、隐蔽的通胀风险。
Conclusion
结论
The convergence of Google’s "Willow" chip demonstrating double-exponential scaling, the logical qubit stability achieved by QuEra, and the targeted efficiency of Cat Qubits creates a threat landscape that is no longer theoretical. The mathematical resource estimates—roughly 2,330 logical qubits or 126,133 cat qubits—define a clear finish line for the hardware race. With Vitalik Buterin identifying the pre-2028 period as the critical danger zone, the blockchain ecosystem is entering a phase of forced evolution. While Solana’s Winternitz Vault offers a glimpse of the "stateful, ephemeral" future of secure transactions, the broader industry faces a monumental challenge: upgrading the engines of a trillion-dollar digital economy while it is in flight, before the laws of physics render its current foundations obsolete.
Google 的 "Willow" 芯片展示的双指数扩展、QuEra 实现的逻辑量子比特稳定性以及猫量子比特的目标效率的融合,创造了一个不再是理论上的威胁格局。数学资源估算——大约 2,330 个逻辑量子比特或 126,133 个猫量子比特——为硬件竞赛划定了一条清晰的终点线。随着 Vitalik Buterin 将 2028 年之前的时期确定为关键危险区,区块链生态系统正进入强制进化阶段。虽然 Solana 的 Winternitz Vault 提供了安全交易“有状态、短暂”未来的惊鸿一瞥,但更广泛的行业面临着巨大的挑战:在万亿美元的数字经济飞行过程中升级其引擎,以免物理定律使其当前的基础过时。
Works cited
Willow processor - Wikipedia, accessed November 20, 2025,
Our Quantum Echoes algorithm is a big step toward real-world applications for quantum computing - Google Blog, accessed November 20, 2025,
Meet Willow, our state-of-the-art quantum chip - Google Blog, accessed November 20, 2025,
Google's Willow Chip: Quantum Leap Or Quantum Hype? - Forrester, accessed November 20, 2025,
Error-Corrected Quantum Algorithms on 48 Logical Qubits - QuEra, accessed November 20, 2025,
Quantum computing on the verge: correcting errors, developing algorithms and building up the user base - Physics World, accessed November 20, 2025,
[2404.02280] Demonstration of logical qubits and repeated error correction with better-than-physical error rates - arXiv, accessed November 20, 2025,
A colorful quantum future - Google Research, accessed November 20, 2025,
[2302.06639] Performance Analysis of a Repetition Cat Code Architecture: Computing 256-bit Elliptic Curve Logarithm in 9 Hours with 126133 Cat Qubits - arXiv, accessed November 20, 2025,
Evaluating cat qubits for fault-tolerant quantum computing using Resource Estimator, accessed November 20, 2025,
Quantum resource estimates for computing elliptic curve discrete logarithms - Microsoft, accessed November 20, 2025,
microsoft/QuantumEllipticCurves: Quantum implementation of elliptic curve primitives - GitHub, accessed November 20, 2025,
US20180336015A1 - Quantum resource estimates for computing elliptic curve discrete logarithms - Google Patents, accessed November 20, 2025,
Improved Quantum Circuits for Elliptic Curve Discrete Logarithms - Microsoft Research, accessed November 20, 2025,
Overall structure of quantum computing resource analysis. K is the... - ResearchGate, accessed November 20, 2025,
Performance Analysis of a Repetition Cat Code Architecture: Computing 256-bit Elliptic Curve Logarithm in 9 Hours with 126 133, accessed November 20, 2025,
Why Vitalik Buterin wants Ethereum to stop changing. 'It's healthy' - DL News, accessed November 20, 2025,
Vitalik Buterin Sets Timeline for Ethereum Quantum-Resistant Transition - TradingView, accessed November 20, 2025,
Vitalik Buterin Warns 20% Quantum Risk by 2030 — Are Bitcoin and Ethereum Truly in Danger? - CCN.com, accessed November 20, 2025,
Ethereum's Future Focuses on Stability and Security, Says Vitalik Buterin - Binance, accessed November 20, 2025,
Solana Is Now 'Quantum Resistant'—What Does That Mean? - Decrypt, accessed November 20, 2025,
What is Solana Winternitz Vault? Full Guide - GetBlock.io, accessed November 20, 2025,
Solana Winternitz quantum-resistant lamports vault - GitHub, accessed November 20, 2025,
Solana's Quantum Resistance: A Game-Changer for Blockchain Security! | by Algoryte, accessed November 20, 2025,
Solana Takes A Step Toward PQC Era With Quantum-Resistant Vault, accessed November 20, 2025,